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Abstract
With recent video object segmentation (VOS) bench-

marks evolving to challenging scenarios, we revisit a sim-
ple but overlooked strategy: restricting the size of mem-
ory banks. This diverges from the prevalent practice of ex-
panding memory banks to accommodate extensive histor-
ical information. Our specially designed “memory deci-
phering” study offers a pivotal insight underpinning such a
strategy: expanding memory banks, while seemingly bene-
ficial, actually increases the difficulty for VOS modules to
decode relevant features due to the confusion from redun-
dant information. By restricting memory banks to a lim-
ited number of essential frames, we achieve a notable im-
provement in VOS accuracy. This process balances the im-
portance and freshness of frames to maintain an informa-
tive memory bank within a bounded capacity. Additionally,
restricted memory banks reduce the training-inference dis-
crepancy in memory lengths compared with continuous ex-
pansion. This fosters new opportunities in temporal reason-
ing and enables us to introduce the previously overlooked
“temporal positional embedding.” Finally, our insights are
embodied in “RMem” (“R” for restricted), a simple yet
effective VOS modification that excels at challenging VOS
scenarios and establishes new state of the art for object
state changes (on the VOST dataset) and long videos (on
the Long Videos dataset). Our code and demo are available
at https://restricted-memory.github.io/.

1. Introduction
The rapid progress of video object segmentation (VOS) al-
gorithms has motivated the creation of more challenging
benchmarks, as exemplified by VOST [39] on more com-
plicated videos with significant object state changes and
the Long Videos dataset [27] featuring extremely long du-
ration. These benchmarks elevate the spatio-temporal mod-
eling and prompt us to reassess conventional VOS designs:
can learning-based VOS modules effectively decipher his-
torical information in such challenging scenarios?

To delve into this issue, it is essential to focus on memory
banks, which are central to storing past features and feeding
input to VOS modules, and are fundamental in the memory-
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Figure 1. In light of challenging object state changes [39, 46, 52],
we rethink the conventional VOS approach of continuously accu-
mulating the features into memory banks: despite capturing all the
information, it complicates the deciphering of relevant features.
Conversely, restricted memory banks significantly enhance VOS.

based VOS framework [9, 11, 50]. Typically, the memory
banks are managed via the simple intuition of expansion,
continuously appending newly sampled frames as the video
progresses. While this approach is intended to encompass
all historical information, thereby enhancing VOS, we real-
ize its potential limitation: as videos become longer or more
complex, these expanding memory banks may overwhelm
the capability of VOS modules to discern reliable features.

We investigate this hypothesis by conducting a pilot
study, named “memory deciphering,” to quantify the decod-
ing capability of VOS modules. In our analysis, we con-
tinue to use object segmentation as the proxy to VOS, but
shift the prediction target to decoding the object mask at
the initial frame (frame 0) from the memory bank. This
choice is deliberate based on the principle of controlling
variables: (1) In the VOS framework, the information of
frame 0 is implicitly propagated to subsequent frames, en-
suring the presence of relevant information for decoding;
(2) This prediction target is consistent across frames and al-
lows for a fair comparison of decoding efficacy under vary-
ing memory sizes. Intuitively, the later frames have rigor-
ously richer information than the earlier frames because of
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a larger memory bank, and are thus expected to produce
better decoding results. However, our observation shows
the opposite: the effectiveness of VOS modules in decipher-
ing information diminishes with increasingly large memory
banks. Intriguingly, this degradation can be mitigated by
selecting a small number of relevant frames in the memory
bank, and we observe a significantly better concentration of
attention scores on relevant frames and regions. Therefore,
our systematic study reveals a pivotal insight: the expan-
sion of memory banks complicates the deciphering of VOS
modules primarily due to redundant information.

Inspired by such an insight, we validate its practical sig-
nificance through a simple approach: restricting memory
banks to a fixed number of frames. Our concise memory
bank facilitates better spatio-temporal modeling and adap-
tation to object transformation according to the analysis of
complex object state changes [39], as illustrated in Fig. 1.
The effectiveness of our method stems from a curated mem-
ory concisely focusing the attention of VOS modules on rel-
evant information. Based on this, we delve into the updating
process when new features arrive. Our strategy balances the
relevance and freshness of frame features, drawing inspira-
tion from the upper confidence bound (UCB) algorithm [3]
from multi-arm bandit problems.

In addition to enhancing the accuracy, restricted mem-
ory banks reduce discrepancies in memory lengths between
training and inference when compared with conventional
methods. Typically, VOS modules are trained on short
clips with a few memory frames, so our restricted memory
bank better aligns with this setup, even when handling sig-
nificantly longer videos during inference. This alignment
opens up opportunities to revisit techniques relying on tem-
poral synchronization between training and inference. As a
compelling example, we introduce temporal positional em-
bedding to explicitly capture the ordering of memory fea-
tures – a critical aspect often overlooked by previous meth-
ods – leading to superior temporal reasoning.

In conclusion, we make the following contributions:
1. We introduce the novel memory deciphering analysis to

systematically reveal the drawbacks of expanding mem-
ory banks for VOS modules in decoding information.

2. Our revisit of restricting memory banks notably en-
hances VOS accuracy for challenging cases, cooperated
with a memory update strategy balancing the relevance
and freshness of frames.

3. Benefiting from smaller training-inference gaps, we in-
troduce the previously overlooked temporal positional
embedding to capture the order of memory frames.

Collectively, our insights lead to a simple yet strong VOS
method: “RMem,” which is plug-and-play for memory-
based VOS methods. Our extensive experiments show its
strengths and establish new state of the art on VOST [39]
for object state changes and the Long Videos dataset [27].

2. Related Work
VOS benchmarks. VOS has evolved through several
benchmarks. DAVIS [35, 36] is the first exhibiting diver-
sity and quality, surpassing early benchmarks [5, 25, 40].
YoutubeVOS [45] further scales up by collecting more
videos. Although they have enabled great progress in VOS,
their limited difficulty and video lengths have spurred more
challenging datasets. For example, the average duration in
LVOS [20] is more than 500 frames and the Long Videos
dataset [27] further extends it to over 1,000 frames, and
MOSE [15] increases the difficulty by selecting videos with
crowds and occlusions. To evaluate our insight on the most
demanding scenarios, we highlight object state changes
involving noticeable transformations in the existence, ap-
pearance, and shapes. Studies on state changes, e.g., VS-
COS [52], mostly utilize ego-centric datasets [13, 14, 18].
In this paper, we primarily select the recent VOST [39].
It combines multiple datasets and provides accurate an-
notations. Notably, VOST shows higher complexity and
longer duration than previous YoutubeVOS and DAVIS. We
mainly concentrate on the challenging benchmarks.
Memory-based VOS. Memory banks are fundamental for
VOS. Earlier approaches [4, 6, 30, 37, 42] treat VOS as on-
line learning and finetune networks with memorized fea-
tures. Some others [7, 21, 43, 47, 49, 51] approach VOS
as template matching but struggle with occluded or dy-
namically changing objects. Consequently, recent meth-
ods mostly focus on memory reading via either pixel-level
or object-level attention [41]. Object-level memory read-
ing [1, 2, 12], inspired by Mask2Former [8], excels at ef-
ficiency. However, it is less effective for delicate masks
or complex scenarios, e.g., VOST [39], where the objects
are frequently small or cluttered. In comparison, pixel-wise
memory reading [9, 11, 17, 27, 33, 38, 44, 48, 50] is more
adopted for its reliable segmentation and it typically asso-
ciates the current frame to memory features with attention.
Our work differs from previous studies by focusing more
on the general insights of drawbacks of expanding memory
banks and plug-and-play strategies to mitigate such issues,
instead of dedicated memory reading architectures.
Restricted Memory Banks in VOS. Previous studies ap-
proach restricting memory banks mostly from the efficiency
aspect [9, 26, 27]. A notable representative, XMem [9],
adopts a hierarchical architecture with customized modifi-
cations like similarity computation and memory potentia-
tion. In contrast to these prior efforts, our work stands out
by explicitly revealing and highlighting the accuracy bene-
fits of restricted memory banks through reducing redundant
information, rather than emphasizing efficiency. Moreover,
our RMem demonstrates such an insight with a simple plug-
and-play enhancement to the VOS framework, avoiding any
noticeable increase or reliance on special operators as in
XMem.
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Figure 2. Sketch of Pilot Study. Our memory deciphering analysis emulates decoding the mask on frame 0 from the memory bank features
to quantify the impact of a growing memory bank on VOS modules, where the “desired results” in the figure are the ground truth. For
a video shown in Block (a), we visualize its decoding results in Block (b): the masks degrade both quantitatively (yellow curve) and
qualitatively, deviating from the desired results. However, selecting a set of concise frames mitigates this issue (blue curve in Block (b)).
Therefore, we conjecture that the drawback of a growing memory bank lies in confusing the attention of VOS modules. In Block (c), we
use red lines to indicate highly weighted associations in attention, with thickness denoting the attention score values. As illustrated, the
query F0 focuses less on its most relevant frame after the memory bank expands, with the attention score dropping from 0.247 to 0.056.
(2nd row shows ground-truth masks S̃t as the reference. Jmean is the average Jaccard between St

0 and S̃0 over all videos.)

3. Pilot Study: Memory Deciphering Analysis
This section devises our pilot experiments on how an ex-
panding memory bank influences the decoding capability
of VOS modules. Our design emulates the task of VOS
but makes several modifications guided by the principle of
controlling variables: the prediction targets and VOS mod-
ules are aligned across our pilot experiments, while only
the frames in the memory bank vary. Such a comparison
enables a clean analysis and reveals the core insight: VOS
modules have limited capability to decode a growing mem-
ory bank.

Notation and Formulation of VOS. We consider the ex-
isting VOS framework as a memory-based encoder-decoder
network: the encoder E(·) is a visual backbone encoding
the image It at frame t into the feature Ft; and then, the de-
coder D(·) converts Ft into the segmentation St via reading
the features stored in the memory M[F0:t−1], as below,

Ft = E(It), St = D(Ft,M[F0:t−1]). (1)
Here, M[F0:t−1] generally comes from saving the features
at a certain frequency [11, 26, 50], and the VOS decoder is
usually special transformers [41], e.g., LSTT in AOT [50].
The final objective of VOS is to minimize the difference
between the predicted mask St and ground truth S̃t.

Design of Our Memory Deciphering Analysis. Our pi-
lot study separates the variables of the VOS module D(·)
and the prediction target S̃t to clearly analyze the influence
of the memory bank M[F0:t−1] under a controlling variable
setting. Therefore, we purposefully design our memory de-
ciphering analysis as decoding the mask of the initial frame

(frame 0) from the features stored in the memory bank.

More precisely, our pilot study is formulated as,
St
0 = D′(F0,M[F1:t]), (2)

where D′(·) is an additional VOS decoder trained for the
objective in Eqn. 2. In practice, we use the original VOS
decoder D(·) to conduct regular VOS as Eqn. 1, and then
employ D′(·) only for deciphering the mask S0

t for frame 0,
to avoid influencing the original VOS. M[F1:t] contains the
stored features between frames 1 to t. Note that the feature
of frame 0 is excluded from the input M[F1:t] to avoid D′

from trivially relying on single-frame memory.

Before delving into the experiments, we emphasize our
reasons for choosing this formulation. (1) Presence of rele-
vant information. The procedure in Eqn. 1 resembles propa-
gating the masks from historical frames to the current frame
t, indicating that M[F1:t] contains the information about the
mask at frame 0. Therefore, decoding the mask on frame
0 from M[F1:t] is not a random guess, but should achieve
high-quality results. (2) Identical prediction target. Our
prediction target remains identical for every frame and vary-
ing memory size. (3) Cooperating with regular VOS. We
utilize D′(·) as a stand-alone VOS decoder so that the orig-
inal VOS process remains unchanged and our pilot study
can utilize the same memory bank.

Implementation. We select the recent VOST [39] dataset
to highlight challenging object state changes. Its long video
duration and complex scenarios push the limits of VOS de-
coders in deciphering memory. Then we adopt AOT [50] as
the VOS encoder-decoder, a popular baseline and the top

3



⋯	⋯

(b)	Memory	Update(a)	VOS	Framework

VOS
Encoder

Q

Memory     Update

Feature OutputVOS
Decoder

K				V

Memory Bank with Size 

Select & RemoveRelevance Freshness

Append

(c)	Temporal	Positional	Embedding

K

V
VOS

Decoder

⋯	⋯

⋯	⋯

Memory Bank

⋯	⋯

Positional Embedding

⋯	⋯

Figure 3. RMem Overview. (a) RMem revisits restricting memory banks to enhance VOS (Sec. 4.1), motivated by the insight from our
pilot study. (b) To maintain an informative memory bank, we balance both the relevance and freshness of frames when updating the latest
features (Sec. 4.2). (c) Benefiting from smaller memory size gaps between training and inference, we introduce previously overlooked
temporal positional embedding to encode the orders of frames explicitly (Sec. 4.3), which enhances spatio-temporal reasoning.

method on VOST. Emulating Eqn. 2, we initialize D′(·)
from AOT’s pretrained decoder D(·), and then supervise
S0
t with a segmentation loss between the ground truth S̃0.

More implementation details are in Sec. B.

Hypothesis and Expectations. With an expanding mem-
ory bank, the information in M[F1:t] becomes rigorously
richer at later frames while the prediction target is un-
changed. Therefore, we naturally expect the decoded mask
St
0 to illustrate stable or better accuracy at later frames, as-

suming that the VOS decoder D(·) is capable of extracting
the relevant features from an increasingly large M[F1:t].

Results and Analysis. Contrasting the expectation above,
we observe that masks St

0 degrade with a growing memory
bank, as shown in Fig. 2 (b). To verify that the growing
memory bank is indeed the cause of degradation, we em-
pirically bound the memory bank to 8 frames containing
the most relevant and latest information, intuitively: first 7
frames and the latest frame in M[F1:t]. According to the
blue curve in Fig. 2 (b), restricting the memory only to store
concise features effectively avoids degradation.

Inspired by addressing the degradation issue, we propose
that the redundant information is the main negative impact
of an expanding memory bank. Otherwise, the degrada-
tion should not disappear simply after we select a subset of
intuitively relevant frames. More specifically, this closely
relates to how VOS methods utilize attention mechanisms
to read from memory banks, where the redundant features
decrease the attention scores on relevant frames. As di-
rect evidence, we analyze the attention scores for decoding
St
0 in Fig. 2 (c) and observe that the attention scores be-

tween F0 and its most relevant memory feature (first frame
in M[F1:t]) have worse concentration on the correct object
and become scattered in a longer memory bank. Therefore,
we conclude that restricting the memory banks with a con-
cise set of relevant features potentially benefits the decoding
of VOS modules via more precise attention.

4. Method of RMem
Motivated by our insight from the pilot study, we propose
a straightforward approach highlighting a concise memory
bank: restricting the memory with a constant frame num-
ber (Sec. 4.1). We then explore the strategies to update
the memory bank to constantly digest incoming features
and remove obsolete frames (Sec. 4.2). Finally, the re-
stricted memory bank decreases the gap between the mem-
ory lengths across the training and inference stages. This
enables previously overlooked techniques, and we propose
a compelling example of temporal positional embedding
(Sec. 4.3). The overview of our method “RMem” (“R” for
“Restricted”) is in Fig. 3.

4.1. Restricting Memory Banks for VOS
Design. As indicated in our pilot study (Sec. 3), VOS
modules have limited capability to process large quantities
of features and thus benefit from a concise memory bank
with less redundant information. To verify this in actual
VOS systems, we develop the simple approach of restrict-
ing the memory bank to a fixed frame number. In practice, a
pre-defined small constant number K is the maximum num-
ber of frames a memory bank can store, as shown in Fig. 3.
The simplicity of our approach makes it a plug-and-play
enhancement for the existing VOS framework.

At an arbitrary frame t, we simplify the notation of the
memory bank by denoting M[F0:t−1] as Mt, containing
Kt ≤ K frames. A natural issue of bounded memory Mt

is that Kt can reach the limit K at sufficiently large t, mak-
ing the digestion of newly arriving features non-trivial, es-
pecially when the quality of information is vital for VOS,
according to how we address degradation in the pilot study
(Sec. 3). Our baseline adopts an intuitively simple yet ef-
fective approach (we explore better strategies in Sec. 4.2):
selecting the most reliable frame (frame 0) and temporally
most relevant frames (closest frames). Formally, updating
the memory bank is as below when Kt = K:

Mt+1 = Concat(Mt
0, M

t
2:Kt−1, Ft), (3)
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where Mt
2:Kt−1 and Ft are the closest frames, and Mt

1 is
removed to create an available slot, as shown in Fig. 3 (b).

Discussion. Our restricted memory is a revisit to previous
methods [26, 27]. However, we are distinct in emphasiz-
ing accuracy instead of efficiency. In addition, our RMem
also simplifies them [9, 26, 27] by treating each frame as a
constituent feature map instead of breaking it into smaller
regions or pixels [9]; thus, our strategy can directly apply
to a wider range of models. Although more sophisticated
strategies might further improve our accuracy, a simple ap-
proach is already effective (Sec. 5.3).

4.2. Memory Update
Updating the incoming frames to the memory bank provides
informative cues for VOS modules to decode. Although our
baseline (Eqn. 3) has already cooperated with the bounded
memory bank, we investigate better methods for updating.

Challenges of Memory Update. As shown in our pilot
study (Sec. 3), improving the conciseness of information
heavily influences the decoding efficacy of VOS modules.
Therefore, naive heuristics of random selection or keeping
the latest frames are unreliable (as in Sec. 5.4, memory up-
date analysis), since they fail to consider the relevance of
frames (random) or suffer from drifting of knowledge (lat-
est). To this end, we propose the principles that consider
both relevant prototypical features and fresh incoming in-
formation from the latest frames.

Memory Update Inspired by Multi-arm Bandits. Our
memory update problem can be stated as how to select and
delete the most obsolete frame kd from K candidates to cre-
ate slots for incoming features. Although not exactly iden-
tical, this problem analogizes multi-arm bandit [23], which
also concerns optimizing the reward by selecting from a
fixed number of candidates. Its most inspiring insight for us
is balancing the exploitation and exploration with the upper
confidence bound (UCB) algorithm [3], whose maximiza-
tion objective Ok for an option k is as below,

Ok = Rk +
√
(2 log T )/tk, (4)

where Rk is option k’s average reward, T is the total
timestamps, and tk is the number of timestamps select-
ing k. When applying to our VOS, we re-define Rk

as the relevance of a frame for reliable VOS and con-
sider

√
(2 log T )/tk as the freshness of memory, intuitively.

Then, the deleted frame kd is chosen according to the small-
est O1:K . In practice, we define the relevance term Rk using
the attention scores between frame Mt

k and current VOS
target Ft, to quantify the contribution of features from the
memory. Under the context of transformers, we assume de-
coding the memory bank is as

FD
t = Attn(Q = Ft,K = Mt,V = Mt), (5)

and assume that St is the scores (after softmax) between Ft

and Mt, computed inside the attention. Then, we treat the

sum of scores as the relevance of a frame in the memory:
Rk = sum(St

k), where St
k is the slice of attention scores

corresponding to Mt
k. Compared to XMem [9], which also

uses attention scores for selection, our design differs in se-
lecting at the frame level instead of the pixel level, which is
simpler and already effective (as in Sec. 5.4).

As for the second term in UCB,
√
(2 log T )/tj , we mod-

ify it by defining tj as the times a frame has stayed in the
memory bank and T as the sum of all the frames’ staying
time. This freshness term penalizes long-staying frames and
allows refreshing from the latest information. Finally, Ok

combines it with the relevance term Rk via a weight α bal-
ancing their numerical scales.

4.3. Memory with Temporal Awareness
Motivation. In addition to accommodating the decoding
capability of VOS modules, restricting the memory bank
systematically decreases the training-inference discrepan-
cies in memory lengths. Specifically, the VOS algorithms
are generally trained on short video clips with a few frames
in the memory, while the videos are much longer during in-
ference time. Therefore, the number of frames in the mem-
ory bank diverges more significantly without our restriction.

Such temporal alignment between training and inference
opens new opportunities for VOS. As a compelling exam-
ple, we introduce temporal positional embedding (PE) to
enhance spatio-temporal reasoning. Specifically, we notice
that previous approaches [9, 11, 50] overlook the order of
frames in the memory, i.e., the temporal relationship among
the frames are not explicitly considered, while spatial PE is
widely adopted. Considering the vital role of orders in tem-
poral modeling, which is commonly addressed with tempo-
ral PE in video-based tasks, we conjecture that the distinc-
tion of memory sizes between training and inference hin-
ders previous methods from employing temporal PE.

Design. The objective of temporal PE is to embed explicit
temporal awareness into memory and guide the attention in
Eqn. 5. Although restriction on the memory bank allevi-
ates the training-inference shift, the challenges of temporal
PE still exist: the optimal memory size K, though much
smaller than expanding, can still be larger than the training-
time memory size Ktrain; (2) the frames in the memory are
varying from 1 to K. To address them, our solution is in-
spired by how ViT [16] uses learnable PE and interpolation
to address different image resolutions. Similarly, we initial-
ize the PE according to Ktrain, denoted as P̃0:Ktrain−1, and the
query Ft having a dedicated PE Pq . Then, the temporal PE
for the memory bank Mt

0:Kt−1 is P t
0:Kt−1.

P t
0:Kt−1 =

{
P̃0:Kt−1, Kt ≤ Ktrain

Interp(P̃0:Ktrain−1,Kt), Kt > Ktrain
(6)

where “Interp(·)” interpolates P̃0:Ktrain−1 to Kt via nearest
neighbor. Finally, temporal PE enhances the original atten-
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tion in Eqn. 5 by augmenting the key and values, identical
to our conceptual illustration in Fig. 3 (c):

FD
t = Attn(Q = Ft + Pq,

K = Mt
0:Kt−1 + P t

0:Kt−1,

V = Mt
0:Kt−1).

(7)

The above design contains two critical choices. (1) We
use the relative index {k = 0, ...,Kt−2} inside the memory
instead of the frame index t to avoid the shift between train-
ing and inference. (2) Using learnable PE instead of Fourier
features fits better to a limited training length, Ktrain.

5. Experiments
5.1. Datasets and Evaluation Metrics
VOST. We primarily utilize the recent VOST [39] dataset
that concentrates on challenging object state changes. It cu-
rates over 700 videos covering diverse object state changes,
e.g., changing appearance, occlusions, crowded objects, and
fast motion. In VOST, the evaluation metrics are J and Jtr,
resembling the average Jaccard over all the frames and the
harder last 25% frames corresponding to state changes.

Long Videos Dataset. We use the Long Videos
dataset [27] to evaluate long-term understanding, similar to
XMem [9]. It contains 3 validation videos with more than
1k frames. J ,F (boundary F measure), andJ&F (average
of J , F) are considered for evaluation.

LVOS. We also experiment with the recent LVOS [20]
dataset and include the results in Sec. C.5.

Regular and Short Video Datasets. YoutubeVOS [45]
and DAVIS [35, 36] are two earlier datasets with shorter
duration and easier scenarios compared with VOST. In this
paper, we use them as the pretraining datasets for VOST and
the Long Videos dataset following standard practice [9, 39],
and conduct analysis in addition to the challenging datasets.

5.2. Baselines and Implementation Details
Our proposed RMem is a simple and plug-and-play en-
hancement for the VOS framework. Without loss of gener-
ality, we select AOT [50] and DeAOT [48] as the main base-
line because of its top performance on VOST (as in Table 1)
and simplicity. It adopts ResNet-50 [19] as its encoder and
a specially designed “long short term-transformer” (LSTT)
as its decoder. For the memory bank, the original AOT
digests the latest frame and expands the memory continu-
ously, while RMem restricts its size to 8 frames. We also
employ RMem on other VOS methods in addition to AOT.
More details on models and implementation in Sec. B.

5.3. State-of-the-art Comparisons
VOST. In Table 1, we compare RMem with previous
methods on VOST. Our approach establishes new state of
the art on this challenging benchmark with a significant im-
provement. Notably, our simple strategy increases the VOS

Jtr J
OSMN Match [47] 7.0 8.7
OSMN Tune [47] 17.6 23.0
CRW [22] 13.9 23.7
CFBI [49] 32.0 45.0
CFBI+ [51] 32.6 46.0
XMem [9] 33.8 44.1
HODOR Img [1] 13.9 24.2
HODOR Vid [1] 25.4 37.1
AOT [50] 36.4 48.7

AOTΨ 37.0 49.2
AOTΨ + RMem (Ours) 39.8 50.5

DeAOTΨ 37.6 50.1
DeAOTΨ + RMem (Ours) 40.4 51.8

Table 1. Comparisons with previous methods on VOST [39]. Our
RMem shows advantages on both overall quality (J ) and address-
ing object state changes (Jtr). (If not specified, the results are
from VOST’s implementation, Ψ denotes our implementation.)

J&F J F
CFBI [49] 53.5 50.9 56.1
CFBI+ [51] 50.9 47.9 53.8
STM [34] 80.6 79.9 81.3
MiVOS [10] 81.1 80.2 82.0
AFB-URR [27] 83.7 82.9 84.5
STCN [11] 87.3 85.4 89.2
XMem [9] 89.8 88.0 91.6
AOT [50] 84.3 83.2 85.4

AOTΨ 86.7 85.5 87.9
AOTΨ + RMem (Ours) 90.3 88.5 92.1

DeAOTΨ 89.4 87.4 91.4
DeAOTΨ + RMem (Ours) 91.5 89.8 93.3

Table 2. Comparison with previous methods on Long Videos
dataset [27]. For both baselines of AOT and DeAOT, our RMem
shows significant improvement. (Without mention, the results are
from XMem [9], Ψ denotes our implementation.)

quality for the whole video (J ) and maintains better robust-
ness for the state-changing frames (Jtr). This is especially
clear when compared to AOT [50]: the improvement is over
∼3% with our plug-and-play modifications.
Long Videos Dataset. As our RMem limits memory ca-
pacity, a natural suspicion is that our memory bank per-
forms worse in storing information and struggles with long-
term modeling. However, our comparison in Table 2 shows
the opposite. On the Long Videos dataset, our RMem not
only improves upon the baseline AOT and DeAOT mod-
els but also outperforms the state of the art XMem [9]
model, which utilizes specially designed hierarchical mem-
ory banks and memory manipulation operators. Therefore,
this further supports our insight on keeping a concise mem-
ory bank to accommodate the limited capability of VOS
modules to address expanding memory banks.
5.4. Ablation Studies
Effect of RMem Components. We analyze each RMem
component respect to AOT and DeAOT baselines, as in Ta-
ble 3. (1) Restricting memory banks. The most important
insight from our pilot study (Sec. 3) is to maintain a concise
memory bank with relevant information, which motivates
our revisit of restricting memory banks (Sec. 4.1). Accord-
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ID RM TPE MU AOT DeAOT
Jtr J Jtr J

1 Baseline 37.0 49.2 37.6 50.9

2 ✓ 38.7 50.3 38.8 51.0
3 ✓ ✓ 39.7 50.3 40.0 51.7
4 ✓ ✓ 39.4 50.3 39.0 51.4
5 ✓ ✓ ✓ 39.8 50.5 40.4 51.8

Table 3. Ablation studies of RMem on VOST. Starting from the
AOT and DeAOT baselines, all of the components improve the
performance, especially the harder object state-changing frames
(Jtr). RM: restricting memory banks. TPE: temporal positional
embedding. MU: memory update with the UCB algorithm.

Method Variant Jtr J

Remove

0th 35.9 48.9
1st 38.7 50.3
Middle 38.3 50.2
Latest 35.7 48.5
Random 38.0 50.0

UCB Relev 39.1 50.1
Relev + Fresh 39.4 50.3

Table 4. Ablation study of different memory updating strategies
on VOST. We analyze deleting a frame in the memory based on
heuristics (“Remove”) or guided by the relevance and freshness of
the UCB algorithm (“UCB”). Our final memory updating strategy
using both relevance and freshness achieves the best performance.

ing to Table 3 (row 1 and 2), a bounded memory bank leads
to significant enhancement in the long and complex VOST
videos. (2) Temporal positional embedding. In Table 3,
we illustrate that adding positional embedding (Sec. 4.3)
greatly benefits the spatio-temporal modeling, especially
the harder Jtr for state changes. (3) Memory update. We
refresh the memory banks by balancing the relevance and
freshness of frames (Sec. 4.2), inspired by the UCB algo-
rithm [3]. In rows 4 and rows 5 of Table 3, such a strategy
effectively boosts the overall performance.
Analysis on Frame Numbers of Memory Banks. We
verify a direct implication of our insight: an expanding
memory bank elevates the difficulty of VOS modules to de-
code information. Specifically, we observe the VOS accu-
racy under various sizes of memory banks. To avoid the
influence of hyper-parameter tuning, we utilize the baseline
memory update strategy in Sec. 4.1. As in Fig. 4, the per-
formance first improves from richer information. Then both
J and Jtr decrease when the length of memory exceeds
the capability of learned AOT modules, until they become
similar to unrestricted memory. Consequently, these results
directly support our insight of restricting memory banks.
Memory Update Analysis. Maintaining an informative
memory bank is critical for the VOS accuracy, and we pro-
pose a UCB-inspired algorithm in Sec. 4.2. Table 4 analyzes
the key intuition and design choices with AOT. (1) The ini-
tial frame is critical in keeping the provided ground-truth
information: removing the 0-th frame leads to an accuracy
drop, and is more profound when scenarios are complex
(VOST). (2) Guaranteeing the freshness of information is
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Figure 4. Impact of memory bank size on VOS, tested on VOST.
With more frames in the restricted memory, the accuracy first in-
creases and then decreases until it approximates unrestricted mem-
ory. This supports the limited deciphering capability of VOS mod-
ules and our insight into restricting memory banks.

Method Jtr J
AOT 37.0 49.2
AOT + RM 38.7 50.3

AOT + SinCos PE 37.2 48.3
AOT + Learnable PE 36.7 49.4

AOT + RM + SinCos PE 37.9 48.9
AOT + RM + Learnable PE 39.7 50.3

Table 5. Comparison of temporal PE strategies on VOST. Based
on restricted memory (“RM”), our learnable temporal PE (“Learn-
able”) is better than using high-frequency Fourier features (“Sin-
Cos”). Notably, restricting memory is essential for PE.

critical, where removing the latest frame leads to the worst
accuracy. (3) Randomly removing frames performs surpris-
ingly well but is still worse than our baseline (removing the
1st frame, in Sec. 4.1). (4) Using attention scores to reflect
the relevance better removes redundant features (“Relev”),
and it is further enhanced with the freshness term, where
freshness is especially effective to avoid frames from stay-
ing long time in the memory bank, supported by the Long
Video dataset. Finally, the best strategy is our UCB-inspired
algorithm combining relevance and freshness.

Temporal Positional Embedding Strategies. We intro-
duce using learnable temporal PE to address the varied
frames in the memory banks of VOS in Sec. 4.3. In Ta-
ble 5, we analyze another PE strategy of encoding the in-
dex into high-frequency features with SinCos functions and
find it performs worse. This is because SinCos is commonly
used in scenarios of a large number or continuous space of
coordinates (e.g., NeRF [31]), while learnable embeddings
can better handle a small number of slots (e.g., ViT [16]),
as in the limited memory length during the VOS training.
Furthermore, we highlight that temporal PE requires re-
stricted memory to function well because of better training-
inference temporal alignment in memory lengths. This sup-
ports our intuition in Sec. 4.3 and suggests the emerging
opportunities from restricting memory banks.
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(a)	Cut	Tomato (b)	Tear	Aluminum	Foil

Video
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Ground
Truth
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Figure 5. (Best viewed zoom-in with color.) Qualitative VOS results for object state changes on VOST [39]. We provide two examples
showing the challenges of object state changes, including slicing, occlusions, distraction from similar objects (other tomatoes), and shape
changes. For both scenarios, using RMem shows advantages in robustly maintaining the masks of the target objects, as highlighted. (White
pixels are annotated by VOST denoting “ignored” regions for evaluation, which are hard and ambiguous even for human annotators.)

Method J&F Jtr J Max Mem ↓ FPS

AOT 85.2 82.5 87.9 4.46G 13.67
AOT + RMem (Ours) 85.2 82.4 88.0 2.34G 15.57

DeAOT 85.2 82.3 88.1 2.24G 25.11
DeAOT + RMem (Ours) 85.3 82.4 88.2 1.53G 27.42

Table 6. RMem maintains the accuracy on DAVIS2017 while be-
ing more efficient, indicating that RMem can be generally applied,
not limited to challenging scenarios. This also aligns with the prior
works and suggests that not having demanding datasets was poten-
tially why the accuracy benefits of memory restriction were not
clearly revealed previously.

Analysis on Regular and Short Video Benchmarks.
We highlight the improvement on long and complex VOS
datasets, but we also supplement our analysis on the regu-
lar and short video dataset DAVIS2017. As in Table 6, our
RMem has relatively the same performance but effectively
improves the efficiency. Compared with our improvement
on VOST and the Long Video dataset, we conjecture that
the learned VOS modules (AOT and DeAOT) are already
capable of handling shorter video duration and less compli-
cated scenarios, even without our concise memory banks.
Additionally, this potentially explains that previous studies
exploring restricting memory banks [25, 27] have not ex-
plicitly discovered its benefits, probably due to not consid-
ering longer and more challenging datasets like VOST.

5.5. Qualitative Results
We visualize on two representative videos from VOST [39]
that require robust spatio-temporal reasoning in Fig. 5.
Video (a) is the kitchen behavior of cutting a tomato into
slices, and it illustrates the challenges of splitting objects,
occlusions from hands, and visual distraction from other
tomatoes. Without our RMem, the baseline AOT model
fails to maintain the masks for the separated tomato slice,
while using RMem correctly remembers this slice at the
later stage of the video (columns 3 and 4). Such regions
are highlighted with the yellow arrows. The other video (b)

illustrates another difficulty of object shape transformation
and splitting between the box and the aluminum. Although
the baseline model without RMem can correctly segment
the box at the beginning of splitting (column 2), it gradually
loses track of the box and can only concentrate on the dom-
inant object. However, our model enhanced with RMem
robustly segments the small regions of the box, indicating
that its attention association with relevant historical frames
is still stable because of our restricted memory. Therefore,
we conclude that the quantitative results reveal the difficul-
ties of object state changes and support the effectiveness of
our approach.

6. Conclusion
This paper reveals the drawbacks of expanding memory
banks, a conventional design in VOS. Our insight stems
from a novel “memory deciphering” analysis, which sug-
gests that the redundant information in growing memory
banks confuses the attention of VOS modules and elevates
the difficulty of feature decoding. Then, we propose the
simple enhancement for VOS named RMem. At its core
is restricting the size of memory banks, accompanied by
UCB-inspired memory update strategies and temporal po-
sitional embedding to enhance spatio-temporal reasoning.
Extensive evaluation on the recent challenging datasets, in-
cluding VOST and the Long Videos dataset, supports our
insight and effectiveness of RMem.

Limitations and Future Work. Our paper prioritizes the
analysis of memory banks and illustrates our insight with
a straightforward approach. Therefore, interesting future
work is to combine the intuition from more sophisticated
methods, such as XMem [9]. Furthermore, our exploration
mainly adapts memory banks to cooperate with the capa-
bility of VOS modules, while how to improve the decoding
ability of VOS modules for a huge memory bank is the al-
ternative direction and interesting future work.
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Appendix
Our appendix cover additional analysis, implementation de-
tails, and discussion as below:
(A) Demo Video. We provide a demo video at

https://youtu.be/mFjGSPXmXdA showing multiple
challenging VOS examples (Sec. A).

(B) Implementation details. We explain the detailed
model architectures and the procedures for training
and inference (Sec. B).

(C) Additional ablation studies. This section provides
more analysis and experimental results (Sec. C).

(D) Addition discussion on limitations and future work.
We offer a more detailed discussion of the limitations
and potential future directions (Sec. D).

A. Demo Video
In https://youtu.be/mFjGSPXmXdA, we provide four qual-
itative comparison examples between the baseline models
(AOT [50] and DeAOT [48]) and our RMem, with the object
state changes from both VOST [39] and the Long Videos
dataset [27]. Notably, these examples illustrate four chal-
lenging scenarios: (1) Object ambiguity: objects have sim-
ilar appearances; (2) Slicing: an object is cut into multi-
ple slices; (3) Appearance changes: an object has changed
its shape and appearances, leading to incorrect VOS masks.
(4) Sudden shape changes: the viewpoint changes quickly
and causes variation in shapes of the target object. The four
examples demonstrate that RMem effectively improves the
spatio-temporal reasoning of VOS.

B. Implementation Details
We describe the outline of implementation of AOT [50] and
DeAOT [48] baselines in Sec. 5.2. This section provides in-
depth details of the implementation and the configuration of
RMem.

B.1. Model Architecture

AOT and DeAOT share the common architecture of the
memory-based VOS framework. As conceptualized in
Eqn. 1, we disassemble the VOS framework into the mod-
ules of an encoder E(·) encoding images into feature maps,
a decoder D(·) extracting information from the memory
bank, and a segmentation head translating the output from
decoder into masks. Please note that we have additionally
decoupled the segmentation head from the decoder for clar-
ity, compared with Eqn. 1.

Encoder. Identical to VOST [39], we adopt ResNet-
50 [19] as the encoder, which achieves competitive perfor-
mance while efficient enough to operate on Long Videos.
The multiple stages in the ResNet encoder produce 3 lev-
els of feature maps {F 4, F 8, F 16} with 1/4, 1/8, and 1/16

the resolution of the original input image, respectively. Fol-
lowing the practice of AOT and DeAOT, the deepest feature
map F 16 is the input to the decoder for memory reading,
and {F 4, F 8} are provided to the segmentation head as in-
put for predicting high-quality masks.
Decoder. AOT and DeAOT utilize a specially-designed
transformer [41] to conduct associative memory reading,
named “Long Short-term Transformer” (LSTT). LSTT
comprises three consecutive transformer layers to enhance
features in the current frame with the memory bank. Adopt-
ing the same notations as Eqn. 1, we conceptually illustrate
this process as Eqn. H:

F
(l+1)
t = Attn(Q = F

(l)
t ,

K = M(l)[F0:t−1],

V = M(l)[F0:t−1]),

(H)

where the superscript (l) denotes the layer index of LSTT,
ranging from 0 to 2. After the above process, We keep
the implementation details identical to the original AOT
and DeAOT. Please refer to them for more detailed con-
figuration. Finally, the output feature F

(3)
t replaces the fea-

ture map F 16 from the encoder not enhanced with spatio-
temporal information.
Segmentation Head. To maintain high-resolution seg-
mentation masks, the segmentation process involves a fea-
ture pyramid network (FPN) [28]. It accepts F

(4)
t as the

input feature, uses {F 8, F 16} as shortcut inputs, and up-
samples them via the combination of a convolutional layer
and a bi-linear up-sampling layer.
Temporal Positional Embedding. We introduce tempo-
ral positional embedding (TPE) in Sec. 4.3 to enhance the
spatio-temporal reasoning ability of models. In practice, we
initialize end-to-end learnable embeddings with the same
number to the memory length during the training time (e.g.,
4 in VOST) and the same dimension to the feature Ft, mark-
ing the PE of each place in the memory bank. For simplic-
ity, the three LSTT layers in Eqn. H share the same set of
TPE.

B.2. Training

Loss Functions. Our training procedure utilizes the same
loss functions as AOT and DeAOT: the combination of
bootstrapped cross-entropy loss and soft Jaccard loss [32].
Both loss terms are averaged 1:1 as the final loss value.
VOST. The training on VOST [39] follows the orig-
inal practice of VOST’s authors, where the models
are fine-tuned on VOST with pretrained weights from
DAVIS2017 [36] and Youtube2019 [45]. As VOST high-
lights spatio-temporal modeling, we follow the authors’
implementation of AOT by using a long sequence length
of 15 frames during training and this accordingly enables
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4 frames in the memory bank. It leverages exponential
moving averages (EMA) for parameter updates to stabi-
lize the training process. The whole training process uses
AdamW [24, 29] optimizer, and lasts 20,000 steps with a
batch size of 8, on 4×A40 GPUs. The initial learning rate
is 2×10−4 and it gradually decays to 2×10−5 according to
a polynomial pattern [49]. To avoid overfitting, we set the
learning rate of the encoder as 0.1 of the other components.
The weight decay is 0.07, which is also identical to AOT
and DeAOT.

Long Videos Dataset. Following the standard prac-
tice [9, 27], we first train the AOT and DeAOT models on
the DAVIS2017 [36] and YoutubeVOS2019 dataset [45],
then conduct inference on the Long Videos dataset [27].
However, to support the training of positional embedding,
we extend the length of training samples from the original
5 frames to 9 frames, to support 4 frames in the memory
banks during the training time. Please note that we also
re-train the baselines under the same setup to ensure a fair
comparison. The training procedure leverages the simi-
lar optimization setting as described above for the VOST
dataset, including the AdamW [24, 29] optimizer, weight
decay of 0.07, polynomial learning rate decay [49] from
2 × 10−4 to 2 × 10−5, 0.1 scaling of the encoder learn-
ing rate, and EMA parameter updates. The only difference
from VOST is training 100,000 steps with a batch size of
16, following the implementation of the original AOT and
DeAOT on DAVIS2017 and YoutubeVOS2019 datasets.

B.3. Inference.

VOST. Instead of appending features into memory at
a fixed frequency of 5 frames, the authors of VOST
developed a different strategy than on DAVIS2017 and
YoutubeVOS2019 to address the CUDA memory issue
caused by higher resolution and longer video duration: the
memory bank is bounded by 30 frames and the frequency
of updating memory banks is accordingly L/30, where L
is the length of the video. For our RMem, we follow the
frequency of memory updates set by VOST, but bounds the
size of memory banks to 9 frames, which is significantly
smaller than the original cap of 30 frames. Therefore, our
RMem needs to update the memory banks by removing the
obsolete frames, and we describe the details of memory up-
date in Sec. B.4 below.

Long Videos Dataset. When comparing to the other ap-
proaches on the Long Videos dataset (Table 2), we primar-
ily rely on the VOS performance evaluated by XMem [9].
However, we re-implement the baselines of AOT and
DeAOT for a fair comparison with RMem, since XMem
has not released the code for evaluating both methods. No-
tably, our re-implementation achieves better performance
compared to XMem’s reported numbers. In practice, we de-

termine the frequency of updating memory banks by L/30
to avoid CUDA memory issues, which is similar to the in-
ference procedure on VOST. Our RMem shares the same
inference setting as baseline, only restricting the memory
bank size to 8 frames. Then, the memory update strategy is
identical to VOST, as described in Sec. B.4.

B.4. Memory Update

As is described in Sec. 4.2, our RMem balances the rele-
vance and freshness of frames in the memory bank using
our algorithm inspired by UCB [3].
Relevance. As mentioned in Sec. 4.2, we use the attention
scores from the transformers in the decoder Eqn. 5 to reflect
the relevance of a memory frame Rk. Since the LSTT de-
coder in AOT and DeAOT has three transformer layers, we
intuitively select the attention scores from the 0-th trans-
former because it is closest to the original image embed-
dings Ft and memory features Mt (ablation in Sec. C.3).
To stabilize the relevance term and avoid fluctuations, we
further apply the moving average technique to the relevance
term. Suppose R

′

k denotes the relevance values of a mem-
ory frame k derived from the latest timestamp, the conse-
quent relevance term Rk is updated via:

Rk ←− (1− λ)R
′

k + λRk, (I)
where we set λ = 0.8 for both VOST and the Long Videos
dataset. As we have noticed, using moving average for sta-
bilization is a common technique for VOS on long videos,
such as in AFB-URR [27].
Freshness. To balance the numerical scales of the rele-
vance and freshness terms, we slightly modify Eqn. 4 as
below,

Oj = Rj + α

√
log T

tj +B
, (J)

where B smooths the numerical ranges of the freshness
term, and α controls the individual contribution of relevance
and freshness. In practice, we set B = 8 and α = 1.5 for
both VOST and the Long Videos dataset. Detailed ablation
studies on the values of α are illustrated in Sec. C.2.

C. Supplemental Ablation Studies
C.1. Memory Update on the Long Videos Dataset

We analyze the memory update strategies on the Long
Videos dataset [27] using our AOT baseline in Table A, in
addition to the analysis on VOST [39] (Table 4). (1) No-
tably, we observe consistent improvement from our UCB-
inspired memory update strategy combining both relevance
and freshness of frames in the memory. (2) Similar to the
results on VOST, our baseline of removing the 1-st frame in
the memory has competitive performance but is inferior to
our final UCB-inspired strategy. (3) The analysis in Table A
also reveals several intriguing differences between the Long
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Videos dataset and VOST. Specifically, VOST highly relies
on the relevance of frames and the reliable information from
the 0-th frames because of its complexity in scenarios, while
the Long Videos dataset highlights the utility of freshness of
frames as a consequence of extremely long video duration.

Method Variants J&F J F

Remove

0th 88.1 86.3 89.9
1st 88.3 86.6 90.1
Middle 86.6 85.5 87.9
Latest 85.4 84.1 86.7
Random 87.7 86.6 88.9

UCB Relev 86.9 85.4 88.3
Relev + Fresh 89.5 87.8 91.2

Table A. Ablation study of different memory updating strategies
on the Long Videos dataset, in addition to VOST (Table 4). We
analyze deleting a frame in the memory based on heuristics (“Re-
move”) or guided by the relevance and freshness of the UCB al-
gorithm (“UCB”). Our final memory updating strategy using both
relevance and freshness achieves the best performance.

C.2. Balancing Relevance and Freshness

As mentioned in Sec. 4.2 and Sec. B.4, we balance rele-
vance and freshness when updating the memory banks via
Eqn. J. Fig. A analyzes the performance under different α
values on both VOST and the Long Videos dataset. Specifi-
cally, a larger α denotes relying more on the freshness term.
A proper α is essential for the UCB-inspired algorithm
to improve memory update for both VOST and the Long
Videos dataset, and we empirically select α = 1.5 because
it generalizes better to both of the datasets. Interestingly,
Fig. A also reveals the difference between VOST and the
Long Videos dataset: VOST has more complex scenarios
and highlights the utility of relevance, while the long video
dataset relies more on freshness due to its extremely long
video duration. Nonetheless, our final α = 1.5 achieves
proper balance for both domains.

C.3. Relevance Calculation

Our relevance term for memory update uses attention scores
to reflect the importance of a frame, similar to previous
works [9, 27]. However, LSTT has three transformer layers
and enables two intuitive strategies of relevance calculation:
(1) directly using the 0-th layer; and (2) computing the av-
erage attention scores of all the transformer layers. Table
B compares these two strategies on VOST and the Long
Videos dataset. We observe that using the 0-th layer for rel-
evance calculation has an advantage in most of the scenar-
ios. We conjecture that the 0-th transformer has the largest
fidelity to the features of images and memory banks. There-
fore, our RMem empirically selects the 0-th transformer for
relevance, as described in Sec. B.4.
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Figure A. Analysis on relevance and freshness for memory up-
date, on VOST and the Long Videos dataset. The performance
varies with different α values (from Eqn. J), and it illustrates the
importance of the trade-off between relevance and freshness.

Methods VOST Long Video
Jtr J J&F J F

AOT + RMem (0th) 39.8 50.5 90.3 88.5 92.1
AOT + RMem (Mean) 39.6 50.3 89.8 88.2 91.5

DeAOT + RMem (0th) 40.4 51.8 91.5 89.8 93.3
DeAOT + RMem (Mean) 40.6 52.0 90.3 88.7 92.0

Table B. Analysis on the relevance calculation. “0-th” and “Mean”
denote using the attention scores from the 0-th transformer layer
or the average attention scores from all of the three layers.

C.4. Analysis on Training-Inference alignment

As discussed in Sec. 4.3, the purpose of temporal positional
embedding is to align the gap between training and infer-
ence, as VOS models are trained on short videos but infer-
encing on unlimited videos. However, it is also valuable
to explore whether it is another approach to address this
training-inference gap. We compared our Restricted Mem-
ory (RM) with 2 approaches: (1) Longer Memory (LM):
train the model with longer video clips so that the model
can fit better on a larger memory bank. (2) More Steps
(MS): train the model with more steps. As is shown in Ta-
ble C, LM certainly is effective in mitigating the training-
inference gap, but it is still worse than our RM. MS exhibits
overfitting with too many training steps, thus not capable of
addressing this issue. However, MS can still gain improve-
ment through our RM, proving our method’s effectiveness
from another perspective.

C.5. Analysis on LVOS

Since the Long Videos dataset only features 3 testing
videos, which is not able to fully demonstrate the effective-
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Model Train Mem Len Step URM RM
Jtr J Jtr J

AOT 4 20k 37.0 49.2 38.6 50.2

AOT-LM 6 20k 38.2 49.9 39.8 50.1

AOT-MS 4 40k 36.6 48.6 37.8 48.0

Table C. Analysis of 2 approaches to address training-inference
gap. “URM” for unrstricted memory and “RM” for restricted
memory. Our “RM” is still the best way to align training and in-
ference.

ness of our method, we further report our model’s perfor-
mance on LVOS dataset [20], which contains 50 long videos
in the validation set.

Methods J&F J F
AOT 63.6 57.6 69.5
AOT + TPE 64.5 58.9 70.0
AOT + RMem 66.1 60.5 71.7

Table D. Results on the validation set of LVOS dataset.

As is shown in Table D, our RMem still holds the high-
est performance compared to the AOT baseline. Besides,
our TPE (temporal positional embedding) exhibits consid-
erable improvements, which proves that TPE is effective in
aligning the training-inference gap, given that the average
duration in LVOS is much longer than other video datasets.

C.6. Analysis on YoutubeVOS2019

Our study concentrates on improving the VOS accuracy
for long and/or complex VOS scenarios. Meanwhile, we
also supplement with analysis on shorter, simpler bench-
marks. As indicated in Table 6, our RMem demonstrates
comparable performance to baselines without RMem on
DAVIS2017 [36], with a notable increase in efficiency. This
result underlines the adaptability of our approach across dif-
ferent regimes.

Further analysis is conducted in the section using the
YoutubeVOS2019 [45] benchmark, with shorter video du-
ration and easier scenarios. In Table E, we evaluate two set-
tings: (1) the influence of only restricting the memory bank
sizes; and (2) the effect of the full RMem with temporal
positional embedding. Table E (rows 1 and 2) shows that:
by limiting the memory banks with the original checkpoint
provided by DeAOT’s authors, we maintain the same VOS
quality. This finding suggests that constraining the memory
banks is a regime-independent strategy.

A key aspect of our RMem is temporal positional em-
bedding (TPE), which necessitates end-to-end model train-
ing on extended sequences. As in Sec. B.2, we increase the
training sequence length from 5 frames to 9 frames without
tuning the hyper-parameters, ensuring a 4-frame memory
bank during the training stage. However, this introduces op-
timization challenges, as reflected in the decreased DeAOT

performance with longer training clips (Table E, rows 1 and
3). Under such a setup and fair comparison, our full RMem
has maintained comparable VOS quality compared with the
baseline (rows 3 and 4). In conclusion, our RMem is also
applicable for YoutubeVOS2019, although tuning the op-
timal hyper-parameters for training with longer sequence
lengths is future work.

Index Method G Js Ju Fs Fu

1 DeAOT 85.9 84.6 89.4 80.8 88.9
2 DeAOT + RMem 85.9 84.6 89.4 80.8 88.9

3 DeAOTΨ 85.6 84.8 80.0 89.7 88.0
4 DeAOTΨ + RMem 85.5 84.6 79.8 89.4 88.2

Table E. Analysis on YoutubeVOS2019 shows that, although not
the primary focus of this paper, our RMem is also applicable for
YoutubeVOS2019 with comparable performance with baselines.
We first apply restricted memory banks to the original DeAOT
checkpoint (rows 1 and 2). To enable temporal positional em-
bedding (TPE), we train DeAOT under a longer sequence length
and denote such models with “Ψ” (rows 3 and 4). The sub-
scripts “s” and “u” denote the “seen” and “unseen” subsets of
YoutubeVOS2019, respectively.

D. Additional Discussion on Limitations and
Future Work

We briefly outlined the limitations of our study in Sec. 6 due
to space limits. This section elaborates on more details.

As mentioned in Sec. 6, we prioritize the analysis of
memory banks, and RMem is designed as a straightforward
instantiation to demonstrate our insight. For this purpose,
our study primarily engages with state-of-the-art methods
like AOT [50] and DeAOT [48]. This choice is grounded,
especially when common VOS studies are built upon a sin-
gle or few preceding approaches due to the complexity
of the framework, such as XMem [9], HODOR [1], and
DeAOT [48]. One potential limitation could be that our
RMem might implicitly depend on the transformer mech-
anisms and the affinity calculation in self-attention, which
are adopted in AOT and DeAOT. These mechanisms na-
tively support the temporal positional embedding and align
with our key motivation of focusing the attention scores on
relevant frames (Sec. 3 and Fig. 2). While future endeav-
ors could explore adapting RMem for various VOS meth-
ods beyond the ones using transformers, near-future VOS
methods will likely continue to employ a transformer-based
framework, making our current RMem design compatible
with them.

Another aspect mentioned in Sec. 6 is the potential for
enhancing RMem with more advanced techniques. While
the current simplicity of our approach effectively demon-
strates our core insights into managing memory bank ca-
pacities, we acknowledge that it can benefit from a more
sophisticated design. As especially pointed out in Sec. 6,
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XMem [9] exhibits an intricate design for efficiently ex-
panding memory banks. Though more complex than our
current method of simply bounding memory bank sizes,
such advancements could offer greater flexibility and po-
tentially improve VOS.

Lastly, as discussed in Sec. 6, another option for en-
hancement lies in improving the decoding capabilities of
the VOS framework. Our study maintains the original de-
sign of existing methods for a fair comparison, yet future
research could explore scaling or modifying VOS architec-
tures to further mitigate the challenges posed by expanding
memory banks.

15


	. Introduction
	. Related Work
	. Pilot Study: Memory Deciphering Analysis
	. Method of RMem
	. Restricting Memory Banks for VOS
	. Memory Update
	. Memory with Temporal Awareness

	. Experiments
	. Datasets and Evaluation Metrics
	. Baselines and Implementation Details
	. State-of-the-art Comparisons
	. Ablation Studies
	. Qualitative Results

	. Conclusion
	. Demo Video
	. Implementation Details
	. Model Architecture
	. Training
	. Inference.
	. Memory Update

	. Supplemental Ablation Studies
	. Memory Update on the Long Videos Dataset
	. Balancing Relevance and Freshness
	. Relevance Calculation
	. Analysis on Training-Inference alignment
	. Analysis on LVOS
	. Analysis on YoutubeVOS2019


	. Additional Discussion on Limitations and Future Work


